Quantifiers and Sheaves
نویسنده
چکیده
The unity of opposites in the title is essentially that between logic and geometry, and there are compelling reasons for maintaining that geometry is the leading aspect. At the same lime, in the present joint work with Myles Tierney there are important influences in the other direction: a Grothendieck " topology " appears most naturally as a modal operator, of the nature " it is locally the case that ", the usual logical operators such as V, 3, => have natural analogues which apply to families of geometrical objects rather than to propositional functions, and an important technique is to lift constructions first understood for " the " category S of abstract sets to an arbitrary topos. We first sum up the principal contradictions of the Grothendieck-GiraudVerdier theory of topos in terms of four or five adjoint functors, significantly generalizing the theory to free it of reliance on an external notion of infinite limit (in particular enabling one to claim that in a sense logic is a special case of geometry). The method thus developing is then applied to intrinsically define the concept of Boolean-valued model for S (BVM/S) and to prove the independence of the continuum hypothesis free of any use of transfinite induction. The second application of the method outlined here is an intrinsic geometric construction of the Chevalley-Hakim global spectrum of a ringed topos free of any choice of a " site of definition ".
منابع مشابه
COMBINING FUZZY QUANTIFIERS AND NEAT OPERATORS FOR SOFT COMPUTING
This paper will introduce a new method to obtain the order weightsof the Ordered Weighted Averaging (OWA) operator. We will first show therelation between fuzzy quantifiers and neat OWA operators and then offer anew combination of them. Fuzzy quantifiers are applied for soft computingin modeling the optimism degree of the decision maker. In using neat operators,the ordering of the inputs is not...
متن کاملFuzzy Acts over Fuzzy Semigroups and Sheaves
lthough fuzzy set theory and sheaf theory have been developed and studied independently, Ulrich Hohle shows that a large part of fuzzy set theory is in fact a subfield of sheaf theory. Many authors have studied mathematical structures, in particular, algebraic structures, in both categories of these generalized (multi)sets. Using Hohle's idea, we show that for a (universal) algebra $A$, th...
متن کاملOn residuated lattices with universal quantifiers
We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...
متن کاملCoherent Sheaves and Cohesive Sheaves
We consider coherent and cohesive sheaves of O–modules over open sets Ω ⊂ Cn. We prove that coherent sheaves, and certain other sheaves derived from them, are cohesive; and conversely, certain sheaves derived from cohesive sheaves are coherent. An important tool in all this, also proved here, is that the sheaf of Banach space valued holomorphic germs is flat. To Linda Rothschild on her birthday
متن کاملSemi-homogeneous Sheaves, Fourier-mukai Transforms and Moduli of Stable Sheaves on Abelian Surfaces
This paper studies stable sheaves on abelian surfaces of Picard number one. Our main tools are semi-homogeneous sheaves and Fourier-Mukai transforms. We introduce the notion of semi-homogeneous presentation and investigate the behavior of stable sheaves under Fourier-Mukai transforms. As a consequence, an affirmative proof is given to the conjecture proposed by Mukai in the 1980s. This paper al...
متن کاملOmega-almost Boolean rings
In this paper the concept of an $Omega$- Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an $Omega$- Almost Boolean ring over a locally Boolean space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010